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Abstract
Magnetic resonance imaging (MRI) and positron emission tomography (PET) are widely used in diagnosis of Alzheimer’s
disease (AD). In practice, incomplete modality problem is unavoidable due to the cost of data acquisition. Deep learning based
models especially generative adversarial networks (GAN) are usually adopted to impute missing images. However, there are
still some problems: (1) there are many regions unrelated to the disease and have little significance in the actual diagnosis
in brain images, which are very cumbersome to generate. (2) The image generated by GAN would introduce noises causing
the poor performance in the diagnostic model. To address these problems, a pairwise feature-based generation adversarial
network is proposed. Specifically, features from the original brain images are extracted firstly. For the paired data without
modality loss, the extractedMRI features are used as input to generate its corresponding PET features, which not only reduces
the scale of the model, but also ensures the direct correlation between the generated features and the diagnosis. In addition,
the available real PET features of the paired samples are added as label to constrain the generated ones. Finally, the attention
mechanism is adopted in both the generator and discriminator, which can effectively retain the structural information of the
feature itself. A large number of experiments have demonstrated that our proposed method has achieved promising results in
the diagnosis of AD.

Keywords Incomplete multi-modal · GAN · AD · Medical imaging

1 Introduction

Alzheimer’s disease is a severe, irreversible syndrome with
an increasing incidence over the years [1]. A slow and pro-
gressive decline in cognitive abilities is the main character of
this disease, includingmemory, language, executive function
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and visuospatial function, which interferes with the daily life
of patients [2].

Meanwhile, Alzheimer’s disease is the most common
cause of dementia by far, accounting for 80 percent of all
dementia diagnoses [3]. Early diagnosis of AD is of great
significance for subsequent treatment because the disease has
usually progressed for many years by the time it is confirmed
[4, 5].

Magnetic resonance imaging (MRI) and positron emis-
sion tomography (PET) are themainmethods used in clinical
diagnosis of AD [6, 7]. They provide comprehensive infor-
mation about the brain of the patient. In recent years, it has
been generally adopted in computer-aided AD diagnosis. A
large number of studies have shown that the two modalities
can complement each other and have a mutual promotion
in the diagnostic accuracy [8–10]. However, there are many
subjects who do not have all the MRI and PET images due to
the situation that they do not complete all the examinations
in the same hospital or they never take the complete exami-
nations, as shown in Fig. 1, which leads to a lot of incomplete
data problems.
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Fig. 1 Illustration of the incomplete multi-modal dataset problem. All
subjects have the images of MRI, but some subjects do not have the
images of PET

Most of the traditional multi-modal-based methods dis-
card the incomplete subjects directly and utilize the complete
modalities to train the diagnostic model [6, 11]. When the
number of subjects is limited, discarding these available sub-
jects can lead to poor performance of the trained model. In
order to make the full use of all available subjects, many
methods have been proposed to deal with the problem of
missing data. Non-negative matrix factorization based meth-
ods usually adopt matrix decomposition to obtain the hidden
space representation of different modalities after alignment
[12]. In addition, a reversemapping can be used to impute the
missing values [13]. However, these methods can only deal
with the missing of random values, but do not perform well
in the condition of the whole modality missing. Later, par-
tial multi-view clustering (PVC) and other variants improved
from non-negative matrix factorization have been proposed
to deal with multi-modal incomplete problem. Multi-modal
data are mapped to a common hidden space representation
by preserving the structural information of original space
between samples by Laplacian matrices. Nowadays, some
deep learning methods are used to deal with the incom-
plete multi-modal problem. They learn the mapping from
one modality to another by deep neural networks, especially
GAN [14, 15]. The generator synthesizes the target image
and the discriminator distinguish the fake images from real

ones. These methods aim to generate brain images [16, 17].
But even preprocessed brain images still contain a lot of use-
less information, for example, pattern noise and regions not
associated with the disease. In the process of synthesizing
images, all of the image need to be generated and identified
even the uninterested regions, which greatly increases the
scale of the model and the cost of training, and may also lead
to the deviation of the regions of interest in diagnosis.

However, for the generation of extracted features, smaller
model size is required and the training is relatively simple,
and the generation of irrelevant regions is omitted, which is
a worth studying problem.

In this paper, a pairwise feature-based generative adver-
sarial network has been proposed to address the incomplete
multi-modal problem. Its framework is shown in Fig. 2.
The available subjects with paired MRI and PET images
are utilized to train the model. Different from the other
works, the extracted features instead of the original images
are synthesized after the feature extraction of the image by
deep network. At the same time, in order to better retain
the structure of the extracted features, the attention layer
is adopted after the input layer of both generator and dis-
criminator. In addition, since the training of GAN is often
unstable and prone to gradient disappearance or gradient
explosion, Smooth L1 loss is adopted to constraint the dis-
tance between available real PET features and the forged PET
features output by generator. Our major contributions are as
follows:

(1) The proposed method is able to deal with the missing of
whole modality, not just the missing in random values,
which is more practice for clinical.

(2) Extracted features rather than original images are syn-
thesized by the generator, which effectively avoids noise
and areas unrelated to disease in the images, greatly
improves the efficiency of generation and strengthening
the regions associated with the disease to improve the
diagnostic accuracy.

(3) The available real features are taken as the label into
the training process of generator, which make up for
the unstable GAN and make the model converge more
quickly. The experimental results show that our pro-
posedmethod obtains promising diagnosis performance
with incomplete MRI and PET data.
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Fig. 2 Illustration of the framework of the proposed method, i.e., pair-
wise feature-based generative adversarial network. GP is the generator
which takes real MRI features as input and synthesized fake PET fea-
tures as output. Smooth L1 loss is adopted in the training procedure.

DP distinguishes PET features from fake to real. Attention mechanism
is added to both GP and DP to retain the structure of the extracted fea-
tures. All layers are fully connected and updated by backpropagation

2 Methods

2.1 Generative adversarial networks

Original GAN architecture includes a generator G and a dis-
criminatorD.G tries to forge the real subjects according to a
random noise z, andD distinguishes the forged subjects from
real ones. Precisely, D outputs 1/0 when the input subject is
real/fake. With the improvement of discriminator’s capabili-
ties, the generator will be further strengthened. In the end, G
is able to fit the data distribution of the real subjects and D
outputs 0.5 for both real and fake subjects. The loss function
is as follows:

min
G

max
D

V (D,G) � Ex−Pdata(x)[logD(x)]

+ Ez−Px

[
log(1 − D(G(z)))

]
(1)

Among them, x is the real subject and z is the random
noise.

In our proposed method, the generator and discrimina-
tor are retained as basic structure. For the extracted features,
MRI data are the input to forge the corresponding PET data.
Our purpose is to learn a mapping which can transfer real
MRI features to fake PET features. Since GAN is able to
synthesize any input into a subject that fits the target data dis-
tribution, when our input is a real sample, it can also obtain
a generated subject that conforms to the probability distri-
bution of the real data. Specifically, XM and XP denote the
extracted realMRI and PET features, respectively.We aim to

learn a feature generator GP: XM → X̂ P , which can impute
X̂ P byGP (XM ) to complete themissing PET. X̂ P denotes the
generated PET features. Besides, discriminatorDP is trained
to distinguish X̂ P from XP. To be specific, for the forged
features X̂ P , Dp outputs 0 and for the real features XP, Dp

outputs 1. The adversarial loss is defined as follows:

Ladv � log(DP (XP )) + log(1 − DP (GP (XM ))) (2)

In the beginning of the training procedure, GP is at a dis-
advantage to Dp in the adversariality. With epoch iteration,
the output of GP is getting closer to the real subjects and Dp

will getting stronger to identify the forged input. In the end,
Nash equilibrium was reached between two networks [18].
GP is able to outputs high quality of forged PET features.

2.2 Attention layer

At the beginning of our network, input features of both GP

and DP would go through an attention layer. Inspired by
human attention mechanism theories, attention mechanism
has achieved great success in natural language processing
tasks and computer vision [19]. Attention mechanism is able
to learn the importance of different parts of the input and
assign differentweights to these parts according to the impor-
tance [20], by which the parts that are more important for the
diagnosis of the disease in input features are highlighted and
original feature structure also be retained.
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In our framework, the input is feature after extraction,
which is itself an important part of the original image for
diagnostic tasks. To improve the efficiency of generation, for
the generator, key information of input MRI features which
are crucial to produce the fake PET features will be empha-
sizedby the attentionmechanism.For the discriminator,more
attention will be given to the important parts to identify the
authenticity of input PET featureswhichwill greatly improve
the identification ability of the discriminator. The attention
layer can be formalized as follows:

q � φ(ω1x + b1) (3)

αi � exp
(
ωi
2q + bi2

)

n∑

i�1
exp

(
ωi
2q + bi2

) (4)

xad justed � [α1, α2, ..., αn] • x (5)

where x are the input MRI or PET features for generator
and discriminator, respectively, q is the output of the hidden
layer, φ(.) is the activation function to improve the nonlinear
capability, α is the final attention scores for each feature in x,
and xad justed denotes the weighted features according to the
attention scores. Besides, {ω1, b1, ω2, b2} are the parameters
of hidden layer and attention layer to be learned in the training
process.

2.3 Pairwise feature-based GAN

In the general cases, the training of GAN is unsupervised,
which bring about a lot of problems. For example, the dis-
criminator tends to have the upper hand over the generator
when the target is too complicated, which causes the genera-
tor to be unable to upgrade. Besides, the training procedure is
easy to get caught up in the problem that gradient explosive
and gradient vanishing [21]. In the diagnosis of AD, it is far
from enough to fit the probability distribution of the target
space due to the generated PET features will eventually be
used for accurate diagnosis. Therefore, more discriminative
information should be retained. To address these issues, pair-
wise features are adopted in our framework to constrain the
producing procedure in the model. Different from the basic
GAN,we emphasize the consistency of inputMRI and output
PET features in GP. The forged PET features will be as sim-
ilar as possible to the real PET features. A pure adversarial
training is not able to achieve the ideal outcome. Hence, its
corresponding real PET feature of each subject is adopted in
the loss functionwhen the input isMRI features. Specifically,
Smooth L1 loss is adopted in the generator:

(6)

L pairwise

(
X̂ P , XP

)

�
⎧
⎨

⎩
0.5

∣∣
∣X̂ P − XP

∣∣
∣
2
, i f

∣∣
∣X̂ P − XP

∣∣
∣ < 1

∣∣∣X̂ P − XP

∣∣∣ − 0.5, otherwise

In this way, the generated PET feature and the real PET
feature will be as close as possible in Euclidean distance.

We combine the adversarial loss with the pairwise loss.
The overall loss is as follows:

L � Ladv + L pairwise (7)

In the end, a classifier C based on multi-layer perceptron
is adopted in our model to make the final diagnosis according
to the data completed by the generated PET features.

3 Experiments

The 913-ADNI dataset used in the experiments was obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset (www.loni.ucla.edu). The dataset includes
five modalities, ID (serial number), single nucleotide poly-
morphism (SNPdata), voxel-based morphometry (VBM),
fluorodeoxyglucose positron emission tomography (FDG)
and F-18 florbetapir PET scans amyloid imaging (AV45)
withAD,MCI andNC.Among them, there are 160ADs, 542
MCIs and 211 NCs. The 542MCI patients have three phases,
like significant memory concern (SMC), early mild cogni-
tive impairment (EMCI) and late mild cognitive impairment
(LMCI). In our work, only VBM, FDG and AV45 modalities
are adopted. The specific information is listed in Table 1.

3.1 Materials and experimental setup

Image pre-processing was performed to all MRI and
PET images in 913-ADNI database which were obtained
from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (www.loni.ucla.edu/ADNI). First of all, the multi-
modality image data of MRI (VBM) and PET (FDG, AV45)
are aligned to the samevisit scanwithMNI152 template. Sec-
ond, normalized gray matter density maps are created from
VBM data in the standard Montreal Neurological Institute
(MNI) space and utilized the SPM software package [22] to
register the FDG and AV45 scans into same space. Based on
the MarsBaR AAL atlas [23], the mean gray matter density
of 116 regions of interest was measured. Then, the FDG glu-

Table 1 Information of studied samples in 913-ADNI dataset (NC �
normal control; the values are denoted as mean± standard deviation)

Subjects Numbers Gender(M/F) Age

NC 210 109/101 76.1±6.5

SMC 82 33/49 72.4±5.7

EMCI 272 153/119 71.5±7.1

LMCI 187 108/79 73.8±8.4

AD 160 95/65 75.2±7.9
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Table 2 Diagnosis results with VBM/FDG of compared methods and our proposed pairwise feature-based generative adversarial network

Task AD vs. NC LMCI vs. EMCI

Missing Rate Method ACC(%) SEN(%) SPE(%) AUC(%) ACC(%) SEN(%) SPE(%) AUC(%)

10% PVC 79.46±1.96 73.60±1.82 83.91±1.19 78.75±0.93 67.33±2.45 77.53±1.06 62.41±3.80 71.44±1.97

UEAF 90.07±1.58 87.04±1.72 92.19±1.93 89.62±1.79 84.22±1.34 92.70±1.36 70.83±1.42 82.44±1.77

GAIN 91.43±2.01 85.47±2.35 96.67±1.67 91.07±1.36 82.61±1.35 91.19±1.74 76.55±3.88 84.13±3.47

Ours 93.27±1.45 92.95±2.11 93.41±1.21 93.18±1.28 87.34±1.29 93.57±1.78 80.19±1.48 86.47±1.55

30% PVC 78.11±1.54 74.56±1.72 81.44±1.53 78.00±1.49 65.99±2.96 80.30±1.52 59.92±3.84 69.17±2.38

UEAF 88.75±2.08 84.64±2.66 92.09±1.72 88.36±1.87 82.67±1.51 88.75±1.03 73.94±1.99 82.49±2.56

GAIN 90.06±1.59 85.99±1.40 94.98±1.39 90.49±1.33 80.65±1.06 90.68±1.55 68.02±4.52 80.46±2.47

Ours 92.45±2.15 92.49±1.61 92.52±1.41 92.51±1.57 86.45±1.23 92.66±1.94 76.99±1.94 85.62±1.33

50% PVC 75.94±2.76 70.75±1.27 80.11±2.14 75.43±2.38 63.56±1.46 70.50±1.19 57.63±3.49 67.56±2.56

UEAF 87.30±0.63 84.69±0.39 90.09±1.56 87.39±0.73 81.33±1.63 86.87±1.10 69.18±1.06 79.80±1.44

GAIN 89.58±1.14 84.62±2.10 94.26±1.38 89.44±1.39 75.87±1.36 91.82±1.57 65.31±4.17 78.14±3.09

Ours 91.37±1.87 88.06±1.06 92.47±1.57 91.35±0.84 85.11±1.42 93.63±1.52 75.16±1.46 83.73±1.39

Table 3 Diagnosis results with VBM/AV45 of compared methods and our proposed pairwise feature-based generative adversarial network

Task AD vs. NC LMCI vs. EMCI

Missing Rate Method ACC(%) SEN(%) SPE(%) AUC(%) ACC(%) SEN(%) SPE(%) AUC(%)

10% PVC 80.00±1.47 71.75±1.89 86.45±1.93 79.10±1.73 72.67±2.18 80.48±1.99 53.70±1.36 65.62±2.28

UEAF 90.03±1.73 84.82±2.06 94.75±1.54 89.41±1.87 83.78±2.83 94.05±1.92 71.36±2.17 82.03±1.60

GAIN 91.16±1.80 87.76±1.44 94.18±1.65 90.97±1.01 85.56±3.33 91.71±2.37 71.57±3.28 81.17±1.44

Ours 92.52±2.14 91.79±2.26 92.26±1.38 92.27±2.11 87.56±1.35 92.76±1.79 77.52±1.25 85.55±1.52

30% PVC 77.30±1.56 73.04±2.04 81.44±1.69 77.24±0.56 71.11±3.19 78.42±1.68 46.04±1.60 63.17±2.19

UEAF 88.65±1.89 84.03±0.97 92.90±1.77 88.47±1.63 82.97±1.41 91.05±1.93 74.22±2.35 81.49±1.62

GAIN 90.03±1.90 82.88±1.04 95.17±1.49 89.02±1.66 82.75±2.43 92.90±1.05 63.92±3.22 77.30±1.28

Ours 91.64±1.43 92.66±1.10 91.25±1.33 91.95±1.82 87.33±1.20 94.25±0.90 77.44±1.20 85.05±1.35

50% PVC 74.86±2.04 73.23±1.14 76.33±1.98 74.78±0.71 68.89±2.07 77.50±1.21 53.06±2.91 61.78±1.50

UEAF 88.38±1.46 84.91±1.67 92.17±1.57 88.13±1.43 80.81±1.41 90.41±1.53 72.53±1.81 79.70±1.82

GAIN 88.98±1.93 81.68±1.31 94.44±1.71 88.06±1.97 80.62±2.34 90.96±1.15 61.83±1.98 71.83±1.66

Ours 90.83±1.89 89.35±0.81 92.36±0.94 90.85±1.72 84.22±1.40 92.31±1.74 73.38±1.26 83.50±1.47

cose utilization and AV45 amyloid values were extracted. At
last, the imaging measures on all modalities with 90 ROIs
after the remove of cerebellum were adopted as quantitative
traits (QTs) in our experiment.

Two kinds of diagnose tasks were performed in our exper-
iments. The first is NC vs. AD and the second is LMCI
vs. EMCI. We compared our method with the state-of-the-
art methods in above two tasks. The dataset was randomly
divided into 90% training set and 10% test set, and ten-
fold cross-validation is utilized to adjust the parameters. It
is worth noting that the PET modality in training set had
varying degrees of missing from 10 to 50%. The diagnos-
tic performance is evaluated by accuracy (ACC), sensitivity
(SEN), specificity (SPE) and area under curve (AUC).

3.2 Performance Evaluation

In this section, three methods are selected for compar-
ison, namely partial multi-view clustering (PVC) [24],
unified-embedding alignment framework (UEAF) [13] and
generative adversarial imputation network (GAIN) [25].
Specifically, PVC builds the latent subspace based on matrix
decomposition to obtain the common representation of each
sample in subspace.

UEAF expands this work by using Laplacian matrix and
manifold learning to build a framework that can complete the
missing data according to the subspace and then optimize the
common representation through the completed data, which
have a mutual promotion. GAIN is a completion method

123



2240 H. Ye et al.

Fig. 3 ROC curves for different comparative experiments and different missing rates on task AD vs. NC with VBM/FDG. (1)~ (3) The cases of
missing 10%, 30% and 50%

Fig. 4 ROC curves for different comparative experiments and different missing rates on task LMCI vs. EMCI with VBM/FDG. (1)~ (3) The cases
of missing 10%, 30% and 50%

Fig. 5 ROC curves for different comparative experiments and different missing rates on task AD vs. NC with VBM/AV45. (1)~ (3) The cases of
missing 10%, 30% and 50%

based on generative adversarial network, and in this work,
a hint matrix is added to improve the quality of generated
data. The diagnosis result of VBM/FDG is shown in Table
2, and VBM/AV45 is shown in Table 3. Correspondingly,

we show the ROC curves of all tasks in Figs. 3, 4, 5 and 6.
Our method achieves the best results in two tasks with two
different PET modalities.
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Fig. 6 ROC curves for different comparative experiment and different missing rates on task LMCI vs. EMCI with VBM/AV45. (1)~ (3) The cases
of missing 10%, 30% and 50%

Fig. 7 Attention maps of
generator with different
modalities. The ordinate
represents 116 ROIs of input
MRI features. Specifically, (1),
(3) on VBM/FDG; (2), (4) on
VBM/AV45

4 Discussion

4.1 Analysis on comparative experiments

In the experiment, we compared the classification results of
our method with the state-of-the-art incomplete multi-modal
methods. The results of the classification tasks are reported
in Tables 2 and 3, with the best results in bold. From these
tables and figures, we can observe that our proposed method
is superior to the compared methods in ACC and AUC. For
the reason that PVConly considers the structural information
between samples, it cannot learn the common representation
well. Manifold learning and Laplacian matrix are adopted by
UEAF,which can learn latent representationmore effectively

and achieve good results. GAIN uses a deep network to pro-
cess missing values, which can better train the generator
according to the hint mechanism and improve the quality of
the generated data. Different from these methods, the struc-
ture of the feature itself is taken into consideration and real
PET features are added into the training procedure. As the
rate of missing data increases, the diagnostic accuracy tends
to decrease, but ourmethod is still effective.Due to the imbal-
ance of samples in dataset, the SEN is significantly higher
than SPE in the task of LMCI vs. EMCI. As we can see in
the ROC curves, although our method does not outperform
the comparative method in all cases, it still achieves the best
AUC in all tasks. Extensive evidence proved the effectiveness
of our proposed method.
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Fig. 8 Attention maps of
discriminator with different
modalities. The ordinate
represents 116 ROIs of input
PET features. Specifically, (1),
(3) on VBM/FDG; (2), (4) on
VBM/AV45

Table 4 Experiment results on
four tasks without attention
mechanism (VBM/FDG)

Task Missing rate ACC(%) SEN(%) SPE(%) AUC(%)

AD vs. NC 0.1 91.54 92.33 93.01 92.28

0.3 91.73 90.18 92.01 91.79

0.5 90.36 89.12 91.98 90.53

LMCI vs. EMCI 0.1 87.02 92.99 78.64 85.49

0.3 86.13 91.98 77.37 85.16

0.5 82.34 92.32 72.88 81.06

Table 5 Experiment results on
four tasks without attention
mechanism (VBM/AV45)

Task Missing rate ACC(%) SEN(%) SPE(%) AUC(%)

AD vs. NC 0.1 92.42 92.04 92.15 92.23

0.3 91.22 91.47 91.34 91.51

0.5 89.65 89.72 91.84 90.10

LMCI vs. EMCI 0.1 86.69 91.98 76.61 84.01

0.3 85.93 91.04 76.13 83.56

0.5 81.44 90.06 71.12 79.93

4.2 Analysis on attentionmechanism

We adopted attention layer in the generator and discrimina-
tor, respectively. Inspired by the human attentionmechanism,
attention can assign different weights to each feature accord-
ing to its importance in the current task, so as to emphasize
important features.

As shown in Figs. 7 and 8, we extracted attention maps of
the generator and discriminator for four different diagnostic
tasks. As shown in Fig. 7, the input of discriminator is MRI

features, which has a large difference in importance between
different ROIs and relatively large variance. In Fig. 8, the dif-
ference between PET features is small, with small variance.

In addition, we removed the attention layer and conducted
ablation experiments for all diagnose tasks. As shown in
Table 4, it can be seen that in almost all cases, the preci-
sion of the model without attention layer is reduced to some
extent, which can fully prove the importance of attention
mechanism.
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5 Conclusion

In this paper, we presents a novel pairwise feature-based
generative adversarial networks for feature synthesis and
diagnosis with incomplete multi-modal features extracted
from brain images. Specifically, we designed a framework
which can generate corresponding missing PET features by
available MRI features. Besides, a linear attention mecha-
nism is adopted to retain the structure of the features and
highlight the disease-relevant parts. Experiments on 913-
ADNI demonstrate that our proposed method generates
discriminative features and achieves promising performance
in the tasks of both AD vs. NC and LMCI vs. EMCI.
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